viernes, 30 de diciembre de 2016

Enzimas de Restricción

La clave de la transgénesis, la obtención de un organismo genéticamente modificado, está en extraer genes de interés de un organismo e introducirlos en otro, de modo de obtener un producto con características mejoradas. Pero ¿cómo se hace para "cortar" ADN de un organismo e insertarlo en otro? Los genetistas necesitaban herramientas para hacerlo, y así descubrieron las enzimas de restricción, las “tijeras moleculares” que cortan el ADN. De esta forma, es posible extraerlo del genoma de un organismo. También descubrieron las enzimas ligasas que "pegan" el fragmento de ADN aislado dentro del ADN del nuevo organismo. Ambos tipos de enzimas son esenciales en las técnicas de ingeniería genética.

Las enzimas son proteínas que cumplen una función esencial en el metabolismo celular: son catalizadores biológicos (aceleradores de reacciones químicas) que hacen posible que las reacciones se lleven a cabo en un tiempo adaptado a las necesidades vitales del organismo. Entre sus características fundamentales se encuentra la de ser específicas, es decir que cada tipo de enzima actúa sobre un sustrato particular o una secuencia particular de una molécula, y no sobre otra. Esta especificidad enzimática resulta fundamental en la actividad de las enzimas de restricción que cortan secuencias particulares y determinadas del ADN.   

Las enzimas de restricción
Las enzimas de restricción son proteínas cuya función es cortar las hebras de ADN. Se podría decir que son “tijeras moleculares” que cortan ADN. Lo hacen en forma específica. Esto significa que cada enzima reconoce un sitio particular del ADN, es decir que reconoce una secuencia particular de nucleótidos. Esa secuencia específica para cada enzima se denomina “sitio de restricción”. Una vez que la enzima reconoce estos sitios, se posiciona sobre la molécula de ADN y corta dentro o en torno de esa secuencia.
Acorde a como realizan el corte, las enzimas se pueden clasificar en:


Enzimas que generan “extremos romos” (parejos) 
Enzimas que generan “extremos cohesivos” (desparejos). Estos extremos “colgantes” de simple cadena pueden pegarse con otros extremos de cadena simple que tengan la secuencia complementaria. Las enzimas encargadas de unir los extremos de ambas cadenas se denominan ligasas



Las enzimas de restricción reconocen secuencias de 4, 6 o más bases y cortan generando extremos romos o extremos cohesivos.




Los extremos, generados en diferentes moléculas de ADN, pueden sellarse con la enzima ADN ligasa y generar así una molécula de ADN nueva, denominada recombinante.

El origen de las enzimas de restricción
Las enzimas de restricción, conocidas también como endonucleasas, sólo cortan el ADN si reconocen en su interior una secuencia específica de nucleótidos. Estas enzimas fueron descubiertas en microorganismos. De hecho, se encuentran sólo en organismos procariotas (bacterias). Por esto, se les dio una nomenclatura asociada al organismo de donde provienen. Por ejemplo, las enzimas de restricción que se descubrieron en la bacteria Escherichia coli se denominan Eco. Existen diferentes tipos de enzimas Eco que se diferencian en la secuencia que reconocen y cortan. Para diferenciarlas se les agregan letras y números romanos, por ejemplo: Eco RI (Eco “erre” “uno”). Así, el sitio de restricción para EcoRI es la secuencia GAATTC, como muestra la ilustración anterior. Una vez que la enzima encontró ese sitio en el ADN, se acerca a la hebra de ADN y realiza el corte entre la G y la A. Al investigar otras especies de bacterias se descubrieron cientos de enzimas de restricción distintas y cada una reconoce una región específica.

Estas enzimas fueron descubiertas en la década del ’70 y hasta la fecha existen más de 250 enzimas de restricción. Se cree que la función natural de estas enzimas en las bacterias es protegerlas contra ADN de virus que podrían ingresar en sus células. De esta manera, la bacteria utiliza estas “tijeras moleculares” para cortar en pedacitos el ADN viral que la infecta. El ADN propio de la bacteria no se corta, pues lo tiene “protegido” contra sus propias enzimas de restricción.

Usos de las enzimas de restricción
Las enzimas de restricción tienen diferentes aplicaciones que son de gran importancia en investigaciones en biología molecular y en las técnicas que emplea la biotecnología moderna:

1. Hacer mapa de restricción de un plásmido o bacteriófago. El ADN se corta con varias enzimas de restricción, solas y en parejas, para determinar el número de sitios de corte y sus posiciones relativas en la molécula, el orden y la distancia entre ellos.


2. Fragmentar ADN para separación por electroforesis. Los fragmentos obtenidos después de la actuación de las distintas enzimas de restricción, se pueden separar por tamaños mediante la técnica de electroforesis y así estudiar los distintos fragmentos. Por ejemplo: para la técnica de Southern blotting o en las usadas para identificar polimorfismos de ADN en distintos individuos.

3. Generación de fragmentos para ser clonados en los vectores apropiados, y crear ADN recombinante. Se puede cortar una molécula de ADN con una enzima y, con el mismo tipo de enzima, cortar el fragmento de ADN de interés para clonar. Se unen con ligasas estas dos moléculas de ADN, generando así una molécula de ADN recombinante. Este vector recombinante puede usarse para transformar células que expresen el gen de interés clonado (si se usó un vector de expresión con el promotor adecuado) o puede usarse simplemente para tener clonado (“guardado”) ese fragmento de ADN de interés. Por ejemplo: para los proyectos de secuenciación de genomas

No hay comentarios:

Publicar un comentario